IPC-1331

Voluntary Safety Standard for Electrically Heated Process Equipment

IPC-1331
March 2000
A standard developed by IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES

2215 Sanders Road, Northbrook, IL 60062-6135
Tel. 847.509.9700 Fax 847.509.9798 www.ipc.org
The Principles of Standardization

In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee (TAEC) that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC standard/guideline is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the lastest revision.

Adopted October 6, 1998

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.
IPC-1331

Voluntary Safety Standard for Electrically Heated Process Equipment

Developed by the Health and Safety Subcommittee (4-32) of the Environmental Health and Safety Committee (4-30) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Acknowledgment

Any Standard involving a complex technology draws material from a vast number of sources. While the principal members of the Health and Safety Subcommittee (4-32) of the Environmental Health and Safety Committee (4-30) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

<table>
<thead>
<tr>
<th>Environmental Health and Safety Committee</th>
<th>Health and Safety Subcommittee</th>
<th>Technical Liaisons of the IPC Board of Directors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman John Lott E.I. DuPont</td>
<td>Chairman Lee Wilmot Hadco</td>
<td>Stan Plzak Pensar Corp. Peter Bigelow Beaver Brook Circuits Inc.</td>
</tr>
</tbody>
</table>

Health and Safety Subcommittee

Collingham, Mark E., Griffin Ltd.
Girard, Joan, Electrotek Corp.
Heth, Michael, Allied Signal
Hoium, Brad, Advanced Flex Inc.

Lundquist, Robert, MNTAP (MN Technical Assistance Prog.)
Scott, Tim, Tyco Printed Circuit Group

Sella, Alon, Micro-Swiss
Tremblay, Russell J., M/A-COM Inc.
Voluntary Safety Standard for Electrically Heated Process Equipment

1 SCOPE
This voluntary standard establishes minimum requirements for the design, installation, operation and maintenance of electrically heated process equipment in order to minimize electrical hazards and prevent fires that may occur in combustible tanks, tank liners and drying equipment. It is intended to cover both liquid and gas (e.g., air) process heaters used in the manufacture of printed wiring boards (PWBs) and printed wiring assemblies (PWAs). Minimum requirements are indicated by the use of the term “shall.”

Please note: This standard does not purport to address all safety issues associated with its use. Users should establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to standard’s use.

2 REFERENCE DOCUMENTS

2.1 This Standard is intended to be compliant with the following regulations and codes:

29 CFR 1910 Subpart S-Electrical
NFPA 70 National Electrical Code, Article 427 of National Electric Code
NFPA 79 National Fire Prevention Association
UL 499 Electric Heating Appliances
CSA C22.2 No. 88-1958 Industrial Heating Equipment
CEmark

3 GENERAL APPLICATION AND USE

3.1 Electric immersion heaters are generally used to heat aqueous or semi-aqueous solutions. They are not recommended for use with flammable solutions and shall not be used with class 1 or 2 flammable liquids.

3.2 Users shall verify with equipment and/or heater manufacturer and chemical supplier(s) that heater sheath material is compatible with the intended solution before installation and use. If user changes chemical composition, user shall ensure that heater sheath material is compatible with the new solution by checking with equipment and/or heater manufacturer.

3.3 Electric immersion heaters may ignite combustible tanks or liners. To prevent ignition, heating elements shall be securely mounted in a manner that prohibits direct contact with the tank or tank liner. Heating elements shall be located at least 25 mm [0.984 in] from the tank bottom and sidewalls or minimum distance recommended by manufacturer.

3.4 Electric heating elements, used in both liquid and gas process heating applications, shall be equipped with appropriate and adequate supports to prevent contact with combustible surfaces as a result of heating element deflection or sag due to use.

3.5 Electric immersion heaters shall be protected from physical damage. They shall be shielded or located to prevent physical damage from contact with other items entering tanks such as anodes, cathodes, racks, product, concentrated chemicals, and/or electrically charged components. Protection shall be accomplished by proper placement or appropriate guarding.

3.6 Heater elements shall be allowed to cool before they are removed from equipment for service or replacement.

3.7 Tanks shall not be drained until heater element has cooled.

3.8 Electric heating devices shall be built and tested to comply with a nationally recognized independent testing laboratory specification, Underwriters Laboratories (UL) and Factory Mutual (FM), for their intended application.

4 DESIGN AND INSTALLATION REQUIREMENTS

Electrically heated process equipment shall comply with the following design and installation requirements:

4.1 Control Circuit Design

4.1.1 A corrosion-resistant temperature-sensing element, such as a thermocouple, thermistor, or resistance thermal device (RTD), shall be used in conjunction with a temperature-indicating controller (see 4.1.2). The use of a thermostat with set point indication is also permitted. All sensing elements shall be compatible with the environment in which they are used (i.e., bath chemistry, fumes, or vapors) or be housed in a chemically compatible thermowell.
4.1.2 A temperature-indicating controller with both sensor break and short protection that provides an indication of process set point shall be used to provide temperature sensor open and short circuit protection. The controller shall allow the power control device (see 4.1.3) to be switched off when the tank temperature reaches the set point or when the system is not being used. A controller that displays the set point and the actual temperature at the same time is preferable because it allows an immediate evaluation of the system condition.

4.1.3 An appropriately sized power control device, such as a contactor relay, solid state relay (SSR), or silicon controlled rectifier (SCR), shall be used for controlling the availability or the amount of electrical power to the process heater.

4.1.4 All liquid process heater elements shall contain a thermal limit device, such as a fusible link, bimetallic thermostat, or other temperature regulating device, to detect an over-temperature condition in all installations where the possibility of combustion exists. The device shall disable power flow to the heating elements in the event of an over-temperature condition. This device may be non-resettable, manually reset, or automatically reset. If the device automatically resets, power flow to the heating elements shall be restricted from automatically resuming by the use of a manual latching circuit. Please note that the type of thermal limit device used will depend upon the technologies employed.

4.1.5 A temperature-sensing device shall be provided to protect electrically heated process equipment from over-temperature conditions. This device shall disable power flow to all heating elements in the event of an over-temperature condition. This device shall be unique to and redundant with the temperature-sensing element specified in 4.1.1. This device may be a pre-set temperature switch or a temperature-sensing element, such as a thermocouple, thermistor, or resistance thermal device (RTD) and its attendant hi-limit controller. The set point of this over-temperature device shall be set at a temperature value that is less than the maximum temperature limit of the equipment (i.e., when reached, no damage will occur to the chamber, lining, vessel or any other component contained within).

4.1.6 If an adjustable device or controller is used, the maximum adjustment position that is available shall be no greater than the equipment’s maximum temperature limit (i.e., when reached, no damage will occur to the chamber, lining, vessel or any other component contained within).

4.1.7 If exothermic chemistries are present in the process vessel, the over-temperature device and associated cooling equipment shall be set at a temperature value to ensure that the exothermic action is controlled. The over-temperature set point for such chemistries shall be lower than the maximum temperature limit dictated by the materials of construction of the vessel or chamber used (i.e., when reached, no damage will occur to the chamber, lining, vessel or any other component contained within). Please note that the over-temperature limit shall be non-resettable to prevent resetting to an unsafe temperature, such as a temperature that is above an exothermic temperature.

4.1.8 An over-temperature controller for the over-temperature sensing device specified in 4.1.5 shall disable power flow to all heating elements in the event of an over-temperature condition. This over-temperature controller may be non-resettable, manually reset, or automatically reset. If the controller automatically resets, power flow to the heating elements shall be restricted from automatically resuming by the use of a manual latching circuit. The over-temperature controller shall activate a visible light and/or audible alarm to signal that an over-temperature condition exists.

4.1.9 For liquid tank heaters, a low-level switch shall be included in the electrical control circuit to disable the heater circuit power whenever the process liquid level drops to less than 25 mm [0.984 in] above the heater elements’ hot zone. This switch shall also be equipped with a visible light and/or audible alarm to indicate that the switch has been activated. It is recommended that users choose low-voltage control circuits for monitoring low-level liquid sensors to prevent risk of shock.

4.1.10 For gas (e.g., air) process heaters, a low-flow switch shall be included in the electrical control circuit to disable the heater circuit power whenever the process gas (e.g., air) flow drops to a value just above the minimum flow required by the heating elements’ manufacturer for gas (e.g., air) process heaters. This switch shall also be equipped with a visible light and/or audible alarm to indicate that the switch has been activated.

4.1.11 A separate safety interrupt contactor shall be included in the electrical control circuit and be wired in series with the thermally-used heater elements specified in 4.1.4 and activated by the temperature-sensing device specified in 4.1.5, the over-temperature controller specified in 4.1.6, the low liquid level switch specified in 4.1.9, or the low-flow switch specified in 4.1.10. This contactor shall be separate from the power control device specified in 4.1.3 to interrupt power flow to all heating elements in the case of an over-temperature condition.

4.1.12 An enable switch or process set point shall be included in the electrical control circuit to disable the heating control (not the safety interrupt controls) if process cooling is utilized in addition to process heating.
4.1.13 Where an exhaust fan is used to prevent the buildup of a flammable or toxic vapor, a safety interlock sensor such as a flow switch shall be included so as to interrupt power to the heaters in the event of fan malfunction. For a flammable vapor, the sensor should be set to actuate at not greater than 25 percent of the lower flammability limit."

4.1.14 For liquid process heaters, Ground Fault Circuit Interrupters shall be employed with baths where solutions are known to be electrically charged.

4.1.15 Electric heater elements shall be equipped with a ground wire of sufficient size to carry any fault current. The construction of both heater and ground wire should be approved by a nationally recognized testing laboratory.

4.2 Control System Installation

4.2.1 For open-top tanks, the low-level switch sensing element shall be mounted in a way that allows the low-level setting to be tested without draining the contents of the tank. This will facilitate periodic testing of the liquid low level switch. For conveyorized equipment, the low-level switch shall be mounted to allow testing of the low-level switch sensing element without draining the sump level whenever possible.

4.2.2 The temperature-sensing element for the thermal over-temperature switch shall be mounted to facilitate testing without draining the tank or sump contents on liquid heaters. Thermostat temperature indicating sensors and hi-limit sensing devices shall be secured in a location below the minimum liquid level and above the bottom of the heating element.

4.2.3 Electrical wiring shall be designed and installed so as to minimize condensation and facilitate drainage of condensation away from electrical connections to prevent arcing, bridging and corrosion on the electrical connections.

4.2.4 All installation work shall be implemented in accordance with the latest edition of the National Electric Code.

4.3 Testing

4.3.1 Testing of all temperature sensing elements, limit controls and liquid level devices shall be performed by trained personnel on a periodic basis to ensure that all components are working properly and to assure the integrity of the safety interrupt circuit. Any failure shall be addressed by the user’s corrective action policy.

4.3.2 All testing shall be documented. Records including corrective action shall be retained for a minimum of one year or per the record retention policy of the user.

4.3.3 Any replacement of a temperature-controlled circuit element shall be calibrated and proper operation shall be verified prior to placing into operation.

4.3.4 Calibration of the temperature controller specified in 4.1.2 should be performed per the manufacturer’s recommendation, but no less than semiannually initially. It is recommended that facilities include this calibration requirement in the plant’s calibration program.

4.3.5 Calibration of the over-temperature controller in 4.1.6 shall be performed as recommended by the manufacturer, but no less than annually.

4.4 Heating System Maintenance

4.4.1 All heater elements shall be periodically inspected and cleaned or as required per manufacturer recommendations to remove any deposits, which may inhibit heat transfer. Heaters used in additive operations may warrant more frequent inspection and maintenance.

4.4.2 All electrical power shall be turned off and locked out in accordance with site lock, tag and try procedures, and proper personal protection equipment worn prior to removing and inspecting heating elements.

4.4.3 The interchanging of parts, which were not included in the original heating system design, shall be limited unless advised by the equipment/heating manufacturer. Alternate parts can lead to failures resulting in either fire or physical injury.
The purpose of this form is to keep current with terms routinely used in the industry and their definitions. Individuals or companies are invited to comment. Please complete this form and return to:

IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Fax: 847 509.9798

This is a NEW term and definition being submitted.
This is an ADDITION to an existing term and definition(s).
This is a CHANGE to an existing definition.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>

If space not adequate, use reverse side or attach additional sheet(s).

Artwork: □ Not Applicable □ Required □ To be supplied
 □ Included: Electronic File Name: _______________________________

Document(s) to which this term applies: ______________________________________

Committees affected by this term: ___

Office Use

<table>
<thead>
<tr>
<th>IPC Office</th>
<th>Committee 2-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Received: __________________</td>
<td>Date of Initial Review: __________________</td>
</tr>
<tr>
<td>Comments Collated: __________________</td>
<td>Comment Resolution: __________________</td>
</tr>
<tr>
<td>Returned for Action: __________________</td>
<td>Committee Action: □ Accepted □ Rejected</td>
</tr>
<tr>
<td>Revision Inclusion: __________________</td>
<td>□ Accept Modify</td>
</tr>
</tbody>
</table>

IEC Classification

Terms and Definition Committee Final Approval Authorization:
Committee 2-30 has approved the above term for release in the next revision.
Name: ___________________ Committee: IPC 2-30 Date: ___________________
Technical Questions
The IPC staff will research your technical question and attempt to find an appropriate specification interpretation or technical response. Please send your technical query to the technical department via:
tel 847/509-9700 fax 847/509-9798
www.ipc.org e-mail: answers@ipc.org

IPC World Wide Web Page www.ipc.org
Our home page provides access to information about upcoming events, publications and videos, membership, and industry activities and services. Visit soon and often.

IPC Technical Forums
IPC technical forums are opportunities to network on the Internet. It’s the best way to get the help you need today! Over 2,500 people are already taking advantage of the excellent peer networking available through e-mail forums provided by IPC. Members use them to get timely, relevant answers to their technical questions.

TechNet@ipc.org
TechNet forum is for discussion of technical help, comments or questions on IPC specifications, or other technical inquiries. IPC also uses TechNet to announce meetings, important technical issues, surveys, etc.

ChipNet@ipc.org
ChipNet forum is for discussion of flip chip and related chip scale semiconductor packaging technologies. It is cosponsored by the National Electronics Manufacturing Initiative (NEMI).

ComplianceNet@ipc.org
ComplianceNet forum covers environmental, safety and related regulations or issues.

DesignerCouncil@ipc.org
Designers Council forum covers information on upcoming IPC Designers Council activities as well as information, comment, and feedback on current design issues, local chapter meetings, new chapters forming, and other design topics.

Roadmap@ipc.org
The IPC Roadmap forum is the communication vehicle used by members of the Technical Working Groups (TWGs) who develop the IPC National Technology Roadmap for Electronic Interconnections.

LeadFree@ipc.org
This forum acts as a peer interaction resource for staying on top of lead elimination activities worldwide and within IPC.

ADMINISTERING YOUR SUBSCRIPTION STATUS:
All commands (such as subscribe and signoff) must be sent to listserv@ipc.org. Please DO NOT send any command to the mail list address, (i.e. <mail list>@ipc.org), as it would be distributed to all the subscribers.

Example for subscribing:
To: LISTSERV@IPC.ORG
Subject:
Message: subscribe TechNet Joseph H. Smith

Example for signing off:
To: LISTSERV@IPC.ORG
Subject:
Message: sign off DesignerCouncil

Please note you must send messages to the mail list address ONLY from the e-mail address to which you want to apply changes. In other words, if you want to sign off the mail list, you must send the signoff command from the address that you want removed from the mail list. Many participants find it helpful to signoff a list when travelling or on vacation and to resubscribe when back in the office.

How to post to a forum:
To send a message to all the people currently subscribed to the list, just send to <mail list>@ipc.org. Please note, use the mail list address that you want to reach in place of the <mail list> string in the above instructions.

Example:
To: TechNet@IPC.ORG
Subject: <your subject>
Message: <your message>

The associated e-mail message text will be distributed to everyone on the list, including the sender. Further information on how to access previous messages sent to the forums will be provided upon subscribing.

For more information, contact Hugo Scaramuzza
tel 847/790-5312 fax 847/509-9798
e-mail: scarhu@ipc.org www.ipc.org/html/forum.htm
Education and Training

IPC conducts local educational workshops and national conferences to help you better understand emerging technologies. National conferences have covered Ball Grid Array and Flip Chip/Chip Scale Packaging. Some workshop topics include:

- Printed Wiring Board Fundamentals
- Troubleshooting the PWB Manufacturing Process
- Choosing the Right Base Material
- Acceptability of Printed Boards
- High Speed Design
- Design for Manufacturability
- Design for Assembly
- Laminate Design for Assembly
- Acceptability of Printed Boards
- Designers Certification Preparation
- New Design Standards

IPC-A-610 Training and Certification Program

“The Acceptability of Electronic Assemblies” (ANSI/IPC-A-610) is the most widely used specification for the PWB assembly industry. An industry consensus Training and Certification program based on the IPC-A-610 is available to your company.

For more information on programs, contact John Riley
tel 847/790-5308 fax 847/509-9798
e-mail: rilejo@ipc.org www.ipc.org

IPC Video Tapes and CD-ROMs

IPC video tapes and CD-ROMs can increase your industry know-how and on the job effectiveness.

For more information on IPC Video/CD Training, contact Mark Pritchard
tel 505/758-7937 ext. 202 fax 505/758-7938
e-mail: markp@ipcvideo.com www.ipc.org

IPC Printed Circuits ExpoSM

IPC Printed Circuits Expo is the largest trade exhibition in North America devoted to the PWB industry. Over 90 technical presentations make up this superior technical conference.

APEXSM / IPC SMEMA Council

APEX is the premier technical conference and exhibition dedicated entirely to the PWB assembly industry.

How to Get Involved

The first step is to join IPC. An application for membership can be found in the back of this publication. Once you become a member, the opportunities to enhance your competitiveness are vast. Join a technical committee and learn from our industry’s best while you help develop the standards for our industry. Participate in market research programs which forecast the future of our industry. Participate in Capitol Hill Day and lobby your Congressmen and Senators for better industry support. Pick from a wide variety of educational opportunities: workshops, tutorials, and conferences. More up-to-date details on IPC opportunities can be found on our web page: www.ipc.org.

For information on how to get involved, contact:
Jeanette Ferdman, Membership Manager
tel 847/790-5309 fax 847/509-9798
e-mail: JeanetteFerdman@ipc.org www.ipc.org
Thank you for your decision to join IPC. IPC Membership is site specific, which means that IPC member benefits are available to all individuals employed at the site designated on the other side of this application.

To help IPC serve your member site in the most efficient manner possible, please tell us what your facility does by choosing the most appropriate member category.

INDEPENDENT PRINTED BOARD MANUFACTURERS

Our facility manufactures and sells to other companies, printed wiring boards or other electronic interconnection products on the merchant market.

WHAT PRODUCTS DO YOU MAKE FOR SALE?

- [] One-sided and two-sided rigid printed boards
- [] Multilayer printed boards
- [] Flexible printed boards
- [] Flat cable
- [] Hybrid circuits
- [] Discrete wiring devices
- [] Other interconnections

Name of Chief Executive Officer/President

INDEPENDENT PRINTED BOARD ASSEMBLERS EMSI COMPANIES

Our facility assembles printed wiring boards on a contract basis and/or offers other electronic interconnection products for sale.

WHAT PRODUCTS DO YOU MAKE FOR SALE?

- [] Turnkey
- [] SMT
- [] Through-hole
- [] Mixed Technology
- [] Consignment
- [] BGA
- [] Chip Scale Technology

Name of Chief Executive Officer/President

OEM – MANUFACTURERS OF ANY END PRODUCT USING PCB/PCAS OR CAPTIVE MANUFACTURERS OF PCB/PCAS

Our facility purchases, uses and/or manufactures printed wiring boards or other electronic interconnection products for our own use in a final product. Also known as original equipment manufacturers (OEM).

IS YOUR INTEREST IN:

- [] purchasing/ manufacture of printed circuit boards
- [] purchasing/manufacturing printed circuit assemblies

What is your company’s main product line?

INDUSTRY SUPPLIERS

Our facility supplies raw materials, machinery, equipment or services used in the manufacture or assembly of electronic interconnection products.

What products do you supply?

GOVERNMENT AGENCIES/ ACADEMIC TECHNICAL LIAISONS

We are representatives of a government agency, university, college, technical institute who are directly concerned with design, research, and utilization of electronic interconnection devices. (Must be a non-profit or not-for-profit organization.)

Please be sure to complete both pages of application.
Please check one:

- $1,000.00 Annual dues for Primary Site Membership (Twelve months of IPC membership begins from the time the application and payment are received)
- $800.00 Annual dues for Additional Facility Membership: Additional membership for a site within an organization where another site is considered to be the primary IPC member.
- $600.00** Annual dues for an independent PCB/PWA fabricator or independent EMSI provider with annual sales of less than $1,000,000.00. **Please provide proof of annual sales.
- $250.00 Annual dues for Government Agency/University/not-for-profit organization

Please send me information on Membership in the Technology Marketing Research Council (TMRC)

Please send me information for Membership in the Assembly Marketing Research Council (AMRC)

Payment Information

Enclosed is our check for $__________________

Please bill my credit card: (circle one) MC AMEX VISA Diners

Card No. __________________________ Exp date ______________

Authorized Signature _________________________

Mail application with check or money order to:

IPC
Dept. 851-0117W
P.O. Box 94020
Palatine, IL 60094-4020

Fax/Mail application with credit card payment to:

IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Tel: 847 509.9700
Fax: 847 509.9798

PLEASE ATTACH BUSINESS CARD OF OFFICIAL REPRESENTATIVE HERE
Standard Improvement Form

The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard.

Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:
IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Fax 847.509.9798

1. I recommend changes to the following:

___ Requirement, paragraph number ______
___ Test Method number ______, paragraph number ______

The referenced paragraph number has proven to be:
___ Unclear ___ Too Rigid ___ In Error
___ Other ______

2. Recommendations for correction:

__
__
__
__
__
__

3. Other suggestions for document improvement:

__
__
__
__
__
__

Submitted by:

Name __________________________ Telephone __________________________

Company __________________________ E-mail __________________________

Address __________________________

City/State/Zip __________________________ Date __________________________